<u>S</u>ubmit

Search Options
» Sign up / Log in

English

Academic edition

Skip to: Main content Side column

- Home
- Contact Us

Find out how to access preview-only content

<u>Ukrainian Mathematical Journal</u>

May-June, 1981, Volume 33, Issue 3, pp 307-313

Absolute summation of series by the Rogosinski-Bernstein method

• V. I. Kuz'mich

Buy now

\$39.95 / €34.95 / £29.95 *

* Final gross prices may vary according to local VAT.

Get Access

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 33, No. 3, pp. 398-406, May-June, 1981.

Other actions

- Export citation
- Register for Journal Updates
- About This Journal
- Reprints and Permissions
- Add to Papers

Share

Share this content on Facebook Share this content on Twitter Share this content on LinkedIn

Supplementary Material (0)

References (18)

About this Article

Over 8.5 million scientific documents at your fingertips Browse by Discipline

Our Content

- Journals
- Books
- Book Series
- Protocols
- Reference Works

Other Sites

- Springer.com
- SpringerProtocols
- SpringerMaterials

Help & Contacts

- Contact Us
- Feedback Community
- Impressum

© Springer International Publishing AG, Part of Springer Science+Business Media<u>Privacy</u> Policy, Disclaimer, General Terms & Conditions

Not logged in Unaffiliated 78.25.50.63

V. I. Kuz'mich UDC 517.52

1. A series $\sum_{n=0}^{\infty} u_n$ is said to be absolutely summable by the lower triangular matrix $A = (a_{nk})$ of a transformation of a series into a series (the A method) or |A|-summable to a number U if

$$\sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} u_k a_{nk} \right| < \infty, \quad \sum_{n=0}^{\infty} \sum_{k=0}^{n} u_k a_{nk} = U.$$

The Rogosinski method is defined by the matrix $R = (r_{nk})$, where

$$r_{00} = 1$$
, $r_{nk} = \cos \frac{k\pi}{2n + 2} - \cos \frac{k\pi}{2n}$ $(0 \le k \le n)$.

The Rogosinski-Bernstein method is defined by the matrix B = (b_{nk}) , where

$$b_{nk} = \cos\frac{k\pi}{2n+1} - \cos\frac{k\pi}{2n-1} \ (0 \leqslant k < n), \ b_{nn} = \cos\frac{n\pi}{2n+1} \ (n \geqslant 0).$$

The sequence of the numbers p_n $(n \ge 0)$, $p_0 \ne 0$, defines the Voron-Nörlund method with the matrix $W = (w_{nk})$, where $w_{nk} = P_{n-k}/P_n - P_{n-k-1}/P_{n-1}$ $(0 \le k < n)$, $w_{nn} = P_0/P_n$ $(n \ge 0)$, $P_n = \sum_{n=1}^{\infty} p_n$ $(n \ge 0)$. In particular, for

$$w_{nk} = kA_{n-k}^{\alpha-1}/nA_n^{\alpha} (0 \le k \le n), A_m^{\beta} = (\beta + 1)(\beta + 2)...(\beta + m)/m!$$

this is the Cesaro method of order $\alpha > -1$. We denote its matrix by C_{α} .

A method of summation is said to be absolutely regular if it absolutely sums each series that converges absolutely to a number U to the same number U. By the Knopp-Lorentz theorem [1, pp. 34, 35], the matrix method $A = (a_{nh})$ with the matrix of transformation of a series into a series is absolutely regular if and only if

$$\sum_{n=0}^{\infty} |a_{nk}| = O(1), \quad \sum_{n=0}^{\infty} a_{nk} = 1 \ (k \geqslant 0).$$

It is easily verified that the Rogosinski and the Rogosinski - Bernstein methods are absolutely regular.

Two methods are said to be absolutely equivalent if they absolutely sum the same series.

THEOREM 1. The Rogosinski-Bernstein method is absolutely equivalent to the Voron-Nörlund method defined by the sequence of numbers $p_n = 2$ (n > 0), $p_0 = 1$.

Proof. The matrix $W = (w_{nk})$ of the Voron - Nörlund method has the form

$$w_{nk} = \frac{4k}{4n^2 - 1} \ (0 \le k < n), \ w_{nn} = \frac{2n - 1}{4n^2 - 1} \ (n \ge 0).$$

To prove the theorem, by virtue of Lemma 2 of [2], it is sufficient to show that the matrix $\mathrm{BW}^{-1}=(a_{\mathrm{nk}})$ is equivalent to absolute convergence. For this we find the elements $\overline{w}_{\mathrm{nk}}$ of the matrix W^{-1} — the inverse matrix of W. We have [1, pp. 57, 103] $\overline{w}_{nk}=(-1)^{n-k}4k(0\leqslant k\leqslant n-1), \overline{w}_{nn}=2n+1\ (n\geqslant 0).$ Now $a_{nk}=\sum_{l=k}^n b_{nl}\overline{w}_{lk}=(2k+1)(\cos k\alpha_n-\cos k\alpha_{n-1})-4k\left(\sum_{l=0}^{n-k-2}(-1)^l\cos (k+l+1)\alpha_n-\cos (k+l+1)\alpha_{n-1}\right)+(-1)^{n-k-1}\cos n\alpha_n\ (0\leqslant k\leqslant n),\ a_{nn}=(2n+1)\cos n\alpha_n\ (n\geqslant 0),$ where $\sum_{l=0}^{n-k-2}c_l=0$ and $\alpha_n=\frac{\pi}{2n+1}\ (n\geqslant 0).$

Kiev Pedagogic Institute. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 33, No. 3, pp. 398-406, May-June, 1981. Original article submitted November 23, 1979; revision submitted October 10, 1980.

Using the result of [3, 1.341.6], after simplifications, we get

$$a_{nk} = \cos k\alpha_n + 2k \sin k\alpha_n \operatorname{tg} \frac{\alpha_n}{2} - \left(\cos k\alpha_{n-1} + 2k \sin k\alpha_{n-1} \operatorname{tg} \frac{\alpha_{n-1}}{2}\right)$$

$$(0 \le k < n-1)$$

Let us set

$$\varphi_k(x) = \cos \frac{k\pi}{2x+1} + 2k \sin \frac{k\pi}{2x+1} \operatorname{tg} \frac{\pi}{2(2x+1)}$$

We have

$$\phi_k'(x) = \frac{2k\pi}{(2x+1)^2} \left(\left(1 - k \sec^2 \frac{k\pi}{2(2x+1)} \right) \sin \frac{k\pi}{2x+1} \right. \\ \left. - 2x \cos \frac{k\pi}{2x+1} \operatorname{tg} \left. \frac{\pi}{2(2x+1)} \leqslant 0 \right. \right)$$

for $x \ge k$, i.e., the function $\varphi_k(x)$ is decreasing in the interval $(k, +\infty)$. Therefore, $\alpha_{nk} \le 0$ for $0 \le k < n-1$.

Since the matrix $BW^{-1}=(a_{nk})$ is normal (i.e., $a_{nn}\neq 0$, $a_{nk}=0$ for $k\geq n$), it is sufficient for the equivalence of this matrix to absolute convergence that [4, 5]

$$\sum_{n=0}^{\infty} |a_{nh}| = O(1), \ \lim_{k \to \infty} \left(|a_{hk}| - \sum_{n=k+1}^{\infty} |a_{nk}| \right) > 0.$$

We have

$$\begin{split} |a_{nn}| - \sum_{i=1}^{N} |a_{n+i,n}| &= (2n+1)\cos n\alpha_n - |(2n+1)(\cos n\alpha_{n+1} - \cos n\alpha_n) - \\ &- 4n\cos (n+1)\alpha_{n+1}| + \sum_{i=2}^{N} \left(\cos n\alpha_{n+i} + 2n\sin n\alpha_{n+i} \operatorname{tg} \frac{\alpha_{n+i}}{2} - \\ &- \left(\cos n\alpha_{n+i-1} + 2n\sin n\alpha_{n+i-1} \operatorname{tg} \frac{\alpha_{n+i-1}}{2}\right)\right) = (2n+1)\cos n\alpha_n - \\ &- |(2n+1)(\cos n\alpha_{n+i} - \cos n\alpha_n) - 4n\cos (n+1)\alpha_{n+i}| + \cos n\alpha_{n+N} + \\ &+ 2n\sin n\alpha_{n+N} \operatorname{tg} \frac{\alpha_{n+N}}{2} - \left(\cos n\alpha_{n+1} + 2n\sin n\alpha_{n+i} \operatorname{tg} \frac{\alpha_{n+i}}{2}\right) \rightarrow \\ &+ (2n+1)\cos n\alpha_n - |(2n+1)(\cos n\alpha_{n+i} - \cos n\alpha_n) - 4n\cos (n+1)\alpha_{n+i}| - \\ &- \left(\cos n\alpha_{n+i} + 2n\sin n\alpha_n \operatorname{tg} \frac{\alpha_{n+i}}{2}\right) + 1 \quad (N \rightarrow \infty). \end{split}$$

The first term on the right-hand side of the above relation converges to $\pi/2$, the second term converges to zero, and the third term converges to $\pi/2$ as $n \to \infty$. Therefore, $\lim_{n \to \infty} \left(|a_{nn}| - \sum_{n=1}^{\infty} |a_{ln}| \right) = \frac{\pi}{2} - \frac{\pi}{2} + 1 = 1 > 0$. Since

 $a_{\rm nn} \to \pi/2$ as $n \to \infty$, it follows from the above-obtained inequality that the following condition is fulfilled: $\sum_{n=k}^{\infty} |a_{nk}| = 0 \text{ (i)}.$ The theorem is proved.

The following theorem is proved in the same manner (on the basis of results of [2]).

THEOREM 2. The Rogosinski method is absolutely equivalent to the method of arithmetic means (the $|C_1|$ method).

Results, analogous to Theorems 1 and 2, for usual summability are contained, respectively, in [6, 7, 8].

The following lemma is proved by the method of inverse transformation in the same way as Theorem 1.

 $\underline{\text{THEOREM 3.}} \quad \text{The inclusions } |C_{\alpha}| \subset |B| \subset |C_{\beta}| \quad \text{are valid if and only if } -1 < \alpha \leq 1, \ \beta \geq 2.$

<u>Proof.</u> In connection with Theorem 1, it is sufficient to prove these relations for the Voron-Nörlund method defined by the sequence of the numbers $p_n = 2$ (n > 0), $p_0 = 1$.