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The hyperspace of a fuzzy metric space is defined by J. Rodŕıguez-López and S. Romaguera.

In this paper, it is shown that the hyperspace construction determines a functor on the category
of fuzzy metric spaces and nonexpanding maps.

We also prove that this functor determines a monad on this category and that the G- sym-
metric power functor can be extended over the Kleisli category of this monad.
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Доказано, что гиперпространство нечеткого метрического пространства, определеное
Родрiгесом-Лопесом и Ромагуэрой определяет функтор на категории нечетких метриче-
ских пространств и их нерастягивающих отображений. Этот функтор дополняется до
монады, на категорию Клейсли которой продолжается функтор G-симметрической степе-
ни.

1. Introduction. The paper deals with the fuzzy metric spaces in the sense of [4], which is
a modification of the notion introduced in [9]. The definition from [4] determines the class
of spaces that are tightly connected with the class of metrizable topological spaces.

In [15], it is shown that there exists a natural fuzzy metric, called the Hausdorff fuzzy
metric, on the hyperspace (the set of nonempty compact subsets) of a fuzzy metric space. In
this paper we show that the construction of the Hausdorff fuzzy metric allows us to define
the hyperspace functor in the category of fuzzy metric spaces and nonexpanding maps.

Note that the hyperspace construction determines a monad in different categories: com-
pact Hausdorff spaces, uniform spaces [17], ultrametric spaces and nonexpanding maps etc.
One of the main results of this paper (Theorem 1) states that the hyperspace functor determi-
nes a monad in the category of fuzzy metric spaces and nonexpanding maps.

Finally, we show that the G-symmetric power functor admits an extension onto the Kleisli
category of the hyperspace monad (i.e. the category of fuzzy metric spaces and nonexpanding
compact-valued maps).

2. Preliminaries.
2.1. Fuzzy metric spaces. The notion of fuzzy metric space, in one of its forms, is
introduced by Kramosil and Michalek [9]. In the present paper we use the version of this
concept given in the paper [4] by George and Veeramani.

Definition 1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if ∗ is
satisfying the following conditions:
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(i) ∗ is commutative and associative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

The following are examples of t-norms: a∗b = ab; a∗b = min{a, b}, a∗b = max{a+b−1, 0}
( Lukasiewicz t-norm).

Definition 2. A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary
set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞) satisfying the following
conditions for all x, y, z ∈ X and s, t > 0:
(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(v) the function M(x, y,−) : (0,∞)→ [0, 1] is continuous.

It is proved in [4] that in a fuzzy metric spaceX, the functionM(x, y,−) is non-decreasing
for all x, y ∈ X.

The following notion is introduced in [4] (see Definition 2.6 therein).

Definition 3. Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t > 0 and x ∈ X.
The set

B(x, r, t) = {y ∈ X |M(x, y, t) > 1− r}
is called the open ball with center x and radius r with respect to t.

The family of all open balls in a fuzzy metric space (X,M, ∗) forms a base of a topology
in X; this topology is denoted by τM and is known to be metrizable (see [4]).

If (X,M, ∗) is a fuzzy metric space and Y ⊂ X, then, clearly,

MY = M |(Y × Y × (0,∞)) : Y × Y × (0,∞)→ [0, 1]

is a fuzzy metric on the set Y . We say that the fuzzy metric MY is induced on Y by M .
Let (X,M, ∗) and (X ′,M ′, ∗) be fuzzy metric spaces. A map f : X → X ′ is called

nonexpanding if M ′(f(x), f(y), t) ≥M(x, y, t), for all x, y ∈ X and t > 0. For our purposes,
it is sufficient to consider the class of fuzzy metric spaces with the same fixed norm (e.g., ∗).
The fuzzy metric spaces (with the norm ∗) and nonexpanding maps form a category, which
we denote by FMS(∗).
2.1. Monads and Kleisli categories. Recall some necessary definitions from the category
theory; see, e.g., [3] for the proof.

For a category C we denote by |C| the class of objects of C. If X, Y ∈ |C|, then C(X, Y )
denotes the set of morphisms from X to Y in C.

Let C be a category. If T is an endofunctor in C and η : 1C → T and µ : T 2 ≡ TT → T
are natural transformations, then T = (T, η, µ) is called a monad if and only if the following
diagrams commute:

T
ηT //

1T

  
Tη
��

T 2

µ

��
T 2 µ // T

T 3 µT //

Tµ
��

T 2

µ

��
T 2 µ // T
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Then η is called the unity and µ the multiplication of T. The functor T is often referred as
the functorial part of T.

A morphism of a monad T = (T, η, µ) into a monad T′ = (T ′, η′, µ′) on C is a natural
transformation ϕ : T → T ′ such that the diagrams

1C
η //

η′   

T

ϕ
��
T ′

T 2 ϕT ′Tϕ//

µ

��

T ′2

µ′

��
T ϕ

// T ′

are commutative. If all the components of ϕ are inclusions, then the monad T is said to ba
a submonad of T′.

The Kleisli category of a monad T is the category CT defined as follows: |CT| = |C|,
CT(X, Y ) = C(X,TY ), and the composition g ∗ f of morphisms f ∈ CT(X, Y ), g ∈ CT(Y, Z)
is given by g ∗ f = µZ ◦ Tg ◦ f .

Define the functor I : C → CT by IX = X, X ∈ |C| and If = ηY ◦ f for f ∈ C(X, Y ).
A functor F : CT → CT is called an extension of the functor F : C → C on the Kleisli

category CT if IF = FI.
The following is criterion of existence of an extension of a functor onto the Kleisli category.

Proposition 1. There exists a bijective correspondence between extensions of functor F
onto the Kleisli category CT of monad T and natural transformations ξ : FT → TF satisfying

1. ξ ◦ Fη = ηF ;

2. µF ◦ Tξ ◦ ξT = ξ ◦ Fµ.

See, e.g., [3] for the proof.

3. Fuzzy hyperspace monad. The fuzzy hyperspace is defined in [15]. We use slightly
different style of notations than that in this paper.

Let (X,M, ∗) be a fuzzy metric space. Denote by expX the set of all nonempty compact
subsets in X. Let B ∈ expX. For any a ∈ X and t ∈ (0,∞), let

M(a,B, t) = sup{M(a, b, t) | b ∈ B}

(see [18]).
The Hausdorff fuzzy metric MH on expX is defined by the formula:

MH(A,B, t) = min

{
inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)

}
(see [15]).

We denote by exp2 = exp exp, exp3,. . . the iterations of the hyperspace functor. Note that
the union map u = uX : exp2X → expX, u(A) = ∪A, is continuous (see, e.g., [11]).

Given a fuzzy metric space (X,M, ∗), we denote byMHH ,MHHH , . . . the Hausdorff fuzzy
metrics on the sets exp2X, exp3X, . . . .

Proposition 2. The union map u : (exp2X,MHH , ∗)→ (expX,MH , ∗) is nonexpanding.
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Proof. Suppose thatMHH(A,B, t) ≥ r, for some A,B ∈ exp2X and t ∈ (0,∞). We are going
to show that MH(∪A,∪B, t) ≥ r. Let a ∈ ∪A. Then there exists A ∈ A such that a ∈ A.
By the definition of the Hausdorff metric, we see that MH(A,B, t) ≥ r. Therefore, there is
B ∈ B such that MH(A,B, t) ≥ r. In particular, this implies that there exists b ∈ B ⊂ ∪B
such that M(a, b, t) ≥ r.

One can similarly show that, for every b ∈ ∪B there exists a ∈ ∪A such that M(a, b, t) ≥
r. Summing up, we see that MH(∪A,∪B, t) ≥ r.

We denote by s : X → expX the singleton map, s(x) = {x}, for every x ∈ X.

Proposition 3. The singleton map s : (X,M, ∗)→ (expX,MH , ∗) is nonexpanding.

Proof. Straightforward.

Theorem 1. The triple H = (exp, s, u) is a monad on the category FMS(∗).

Proof. That the algebraic identities from the definition of monad hold is a well-known
fact (see, e.g., [20]). The previous results guarantee that the maps under consideration are
nonexpanding.

4. Extension of G-symmetric power functor to the Kleisli category. Recall the
definition of the G-symmetric power. Let G be a subgroup of the symmetric group Sn.
Denote by ∼=∼G the following equivalence relation on the n-th power Xn of a set X

(x1, . . . , xn) ∼ (y1, . . . , yn)⇔ xi = yσ(i) for some σ ∈ G.

We denote by [x1, . . . , xn] the equivalence class containing (x1, . . . , xn). The quotient set of
the equivalence relation ∼ is denoted by SP n

GX.
Now, let (X,M, ∗) be a fuzzy metric space. Define a function M̃ : SP n

GX × SP n
GX ×

(0,∞)→ [0, 1] as follows

M̃([x1, . . . , xn], [y1, . . . , yn], t) = max
σ∈G

min
i=1,...,n

M(xi, yσ(i), t).

Proposition 4. The function M̃ is a fuzzy metric on the set SP n
GX.

Proof. Let us verify property (iv) from the definition of fuzzy metric. Let

[x1, . . . , xn], [y1, . . . , yn], [z1, . . . , zn] ∈ SP n
GX,

t, s ∈ (0,∞), then there exist σ, τ ∈ G such that

M̃([x1, . . . , xn], [y1, . . . , yn], t) = min
i=1,...,n

M(xi, yσ(i), t),

M̃([y1, . . . , yn], [z1, . . . , zn], s) = min
i=1,...,n

M(yi, yτ(i), s).

We have

M̃([x1, . . . , xn], [y1, . . . , yn], t) ∗ M̃([y1, . . . , yn], [z1, . . . , zn], s)

=

(
min

i=1,...,n
M(xi, yσ(i), t)

)
∗
(

min
i=1,...,n

M(yi, yτ(i), s)

)
≤ min

i=1,...,n
M(xi, yσ(i), t) ∗M(yσ(i), zτ(σ(i)), s) ≤ min

i=1,...,n
M(xi, zτ(σ(i)), t+ s)

≤max
%∈G

min
i=1,...,n

M(xi, z%(i), t+ s) = M̃([x1, . . . , xn], [z1, . . . , zn], t+ s).
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The function t 7→ M̃([x1, . . . , xn], [y1, . . . , yn], t) is obtained from the continuous functions
t 7→ M(xi, yj, t), i, j = 1, . . . , n, by applying the operations max and min and therefore are
continuous as well. This proves (v).

The other properties from the definition of fuzzy metric are easy to verify.

Remark 1. If G is a trivial group, then SP n
G(X) = Xn and we obtain the following fuzzy

metric on Xn:
M̃((x1, . . . , xn), (x1, . . . , xn)) = min

i=1,...,n
M(xi, yi, t).

Given a map f : X → Y , define the map SP n
G(f) : SP n

G(X)→ SP n
G(Y ) by the formula:

SP n
G(f)([x1, . . . , xn]) = [f(x1), . . . , f(xn)].

Proposition 5. Let (X,M, ∗) and (X ′,M ′, ∗) be fuzzy metric spaces. If a map f : (X,M,
∗)→ (Y,N, ∗) is nonexpanding, then so is SP n

G(f).

Proof. The straightforward verification is left to the reader.

We therefore obtain theG-symmetric power functor SP n
G acting in the category FMS(∗).

Theorem 2. The functor SP n
G admits an extension to the Kleisli category FMS(∗)H.

Proof. Let (X,M, ∗) be a fuzzy metric space. Define the map

dX : SP n
G expX → expSP n

GX

by the formula

dX([A1, . . . , An]) = {[a1, . . . , an] | ai ∈ Ai, i = 1, . . . , n},

where Ai ∈ expX, i = 1, . . . , n.
We are going to show that the map dX is nonexpanding.
Let [A1, . . . , An], [B1, . . . , Bn] ∈ SP n

G expX. Suppose that

(MH )̃([A1, . . . , An], [B1, . . . , Bn], t) ≥ r,

for some r ∈ (0, 1). Then there exists σ ∈ G such that

min
i=1,...,n

MH(Ai, Bσ(i), t) ≥ r

and therefore, for every i = 1, . . . , n, we see that MH(Ai, Bσ(i),
t) ≥ r. Let [a1, . . . , an] ∈ dX([A1, . . . , An]). Then, for every i = 1, . . . , n there exists
bσ(i) ∈ Bσ(i) such that M(ai, bσ(i), t) ≥ r. Then [b1, . . . , bn] ∈ dX([B1, . . . , Bn]) and

M̃([a1, . . . , an], [b1, . . . , bn], t) ≥ min
i=1,...,n

M(ai, bσ(i), t) ≥ r.

One can similarly show that, for every [b1, . . . , bn] ∈ dX([B1, . . . , Bn]), there exists [a1, . . . ,
an] ∈ dX([A1, . . . , An]) such that M̃([a1, . . . , an], [b1, . . . , bn], t) ≥ r. We conclude that

(M̃)H(dX([A1, . . . , An]), dX([B1, . . . , Bn])) ≥ r.

Therefore, the map dX is nonexpanding.
Similarly as in [21] we verify that the natural transformation d = (dX) satisfies the

conditions of Proposition 1. Thus, the functor SP n
G admits an extension to the Kleisli category

FMS(∗)H.
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5. Remarks and open problems. Let expcX denote the subspace of expX consisting of
continua. Clearly, expc is a subfunctor of exp. This subfunctor determines a submonad Hc

(the continuum hyperspace monad) of the monad H. The above results remain correct if we
replace H by Hc.

For an arbitrary monad T = (T, η, µ) in C a pair (X, f), where f : TX → X is a morphism
in C, is called a T-algebra if the following commute

X
ηX //

1X !!

TX

f
��
X

T 2X
µX //

Tf

��

TX

f
��

TX
f // X.

The morphism f : TX → X is then referred as the structure morphism of the T-algebra
(X, f).

Evidently, the couple (TX, µX) is a T-algebra for every X. This algebra is said to be
a free T-algebra, determined by the object X. An arrow ϕ : X → Y is called a morphism of
algebras (X, f)→ (Y, g) if and only if the diagram

TX
Tφ //

f
��

TY

g
��

X
φ // Y

commutes. T-algebras and maps of algebras form the Eilenberg-Moore category CT. It is
well known that the category of H-algebras for the hyperspace monad H in the category
of compact Hausdorff spaces and continuous maps is isomorphic to the category of Lawson
semilattices. A similar characterization is obtained for the hyperspace monad in the category
of uniform spaces. We leave as an open problem that of characterization of the category of H-
algebras for the hyperspace monad H in the category FMS(∗). Since the characterization
in the mentioned categories is based on the corresponding semi-lattice theory, we expect
that the characterization of the category of H-algebras for the hyperspace monad H in the
category FMS(∗) opens the door to the development of a fuzzy semi-lattice theory.

One can also consider the hyperspace functor in the category of fuzzy ultrametric spaces
and nonexpanding maps. Recall that a fuzzy metric (X,M, ∗) is called a fuzzy ultrametric if
the following inequality holds:

M(x, y, t) ∗M(y, z, t) ≤M(x, z, t), x, y, z ∈ X, t ∈ (0,∞)

(see, e.g., [16]). The results of the present paper have their counterparts for this category.
One can consider a wider category of fuzzy metric spaces and nonexpanding maps

(without fixing the t-norms). It looks plausible that the results of this note have their
counterparts also in this wider category.
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