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a b s t r a c t

We introduce a fuzzy ultrametric on the set of probability measures with compact support
defined on a fuzzy metric space. The construction is a counterpart, in the realm of fuzzy
ultrametric spaces, of the construction due to Vink and Rutten of an ultrametric on the set
of probability measures with compact supports on an ultrametric space.
It is proved that the set of probability measures with finite supports is dense in the

natural topology generated by the defined fuzzy ultrametric.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The notion of fuzzy metric space first appeared in paper [1] and later was modified in [2]. The version from [2], despite
being more restrictive, determines the class of spaces that are tightly connected with the class of metrizable topological
spaces.
Different notions and results of the theory of metric spaces have their analogues for the fuzzy metric spaces. At the same

time, there are phenomena in the realm of fuzzy metric spaces that have no immediate counterparts for metric spaces. The
completeness and the existence of non-completable fuzzy metric spaces can serve as an example. This demonstrates that
the fuzzy metric seems to be a structure that leads to a theory which seems to be a richer one than that of metric spaces.
The construction of new fuzzy metric spaces out of old ones is of interest in the theory of these spaces. The operation of

product of two fuzzy metric spaces is investigated in [3]. In [4], it is shown that there exists a natural fuzzy metric, called
the Hausdorff fuzzy metric, on the hyperspace (the set of nonempty compact subsets) of a fuzzy metric space.
There exists an analogue for the notion of ultrametric (non-Archimedean) metric space for fuzzy metric spaces, see [5,6].
The set of probabilitymeasures on ultrametric spaces turned out to be an important object of investigations in connection

with programming language semantics (see, e.g., [7]). In [8], a natural ultrametric is defined on this set.
It is a natural problem to extend the class of spaces on which the probability measures are compared to that of fuzzy

ultrametric spaces. This is done in the present paper.
We consider the notion of fuzzy ultrametric for the case of the t-normmin. Every fuzzy ultrametric is a fuzzy metric and

we observe that the Hausdorff fuzzy metric generated by a fuzzy ultrametric is also a fuzzy ultrametric.
The main result is Theorem 4.1, which states that any fuzzy ultrametric on a topological space that induces the topology

of this space admits an extension onto the set of probability measures with compact supports in this space.
We also show that the set of measures with finite supports is dense in the obtained space. Finally, we prove that, themap

assigning to every probability measure its support, is nonexpanding. Note that this is true for the Vink–Rutten metric but
not for the Kantorovich metric on the set of probability measures.
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2. Preliminaries

2.1. Fuzzy metric spaces

The notion of fuzzy metric space, in one of its forms, is introduced by Kramosil andMichalek [1]. In the present paper we
use the version of this concept given in the paper [2] by George and Veeramani.

Definition 2.1. A binary operation ∗: [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if ∗ is satisfying the following
conditions:

(i) ∗ is commutative and associative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ dwhenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

The following are examples of t-norms: a ∗ b = ab; a ∗ b = min{a, b}.

Definition 2.2. A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm andM
is a fuzzy set on X2 × (0,∞) satisfying the following conditions for all x, y, z ∈ X and s, t > 0:

(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
(v) the functionM(x, y,−): (0,∞)→ [0, 1] is continuous.

It is proved in [2] that in a fuzzy metric space X , the functionM(x, y,−) is nondecreasing for all x, y ∈ X .
The following notion is introduced in [2] (see Definition 2.6 therein).

Definition 2.3. Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t > 0 and x ∈ X . The set

B(x, r, t) = {y ∈ X | M(x, y, t) > 1− r}

is called the open ballwith center x and radius r with respect to t .

The family of all open balls in a fuzzy metric space (X,M, ∗) forms a base of a topology in X; this topology is denoted by
τM and is known to be metrizable (see [2]).
If (X,M, ∗) is a fuzzy metric space and Y ⊂ X , then, clearly,

MY = M | (Y × Y × (0,∞)): Y × Y × (0,∞)→ [0, 1]

is a fuzzy metric on the set Y . We say that the fuzzy metricMY is induced on Y byM .
Let (X,M, ∗) and (X ′,M ′, ∗) be fuzzy metric spaces. A map f : X → X ′ is called nonexpanding if M ′(f (x), f (y), t) ≥

M(x, y, t), for all x, y ∈ X and t > 0. For our purposes, it is sufficient to consider the class of fuzzy metric spaces with the
same fixed norm (e.g., ∗). The fuzzy metric spaces (with the norm ∗) and nonexpanding maps form a category, which we
denote by F MS(∗).

2.2. Spaces of probability measures

Let X be ametrizable space. By P(X)we denote the space of probabilitymeasures with compact support in X (see, e.g., [9]
for the necessary definitions that concern probability measures). Recall that the support of a probability measure µ ∈ P(X)
is the minimal (with respect to the inclusion) closed set supp(µ) such that µ(X \ supp(µ)) = 0. For any x ∈ X , by δx we
denote the Dirac measure concentrated at x.
Any probability measure µ of finite support can be represented as follows: µ = Σni=1αiδxi , where α1, . . . , αn ≥ 0 and

Σni=1αi = 1. By Pω(X)we denote the set of all probability measures with finite supports in X .
Every continuous map f : X → Y of metrizable spaces generates a map P(f ): P(X) → P(Y ) defined by the condition:

P(f )(µ)(A) = µ(f −1(A)), for every Borel subset of Y .

3. Fuzzy ultrametric spaces

One can define a counterpart of the notion of ultrametric in the realm of fuzzy metric spaces (see, e.g., [6]).

Definition 3.1. A 3-tuple (X,M, ∗) is said to be a fuzzy ultrametric space if X is an arbitrary set, ∗ = min andM is a fuzzy
set on X2 × (0,∞) satisfying conditions (i), (ii), (iii), (v) from Definition 2.2 and the following condition:



132 A. Savchenko, M. Zarichnyi / Topology 48 (2009) 130–136

(iv′) M(x, y, t) ∗M(y, z, s) ≤ M(x, z,max{t, s}), for all x, y, z ∈ X and t, s ∈ (0,∞).

In [6], it is remarked that condition (iv′) is equivalent to the following:
(iv′′) M(x, y, t) ∗M(y, z, t) ≤ M(x, z, t), for all x, y, z ∈ X and t ∈ (0,∞)

(see [5, Definition 5]).

Lemma 3.2. Let M be a fuzzy ultrametric on a set X. Then, for every x, y ∈ X, the function M(x, y,−): (0,∞) → [0, 1] is
nondecreasing.

Proof. Let s ≤ t . Then

M(x, y, s) = min{M(x, y, s), 1} ≤ min{M(x, y, s),M(y, y, t)} ≤ M(x, y, t). �

Remark 3.3. In the proof of Lemma 3.2, we did not use property (v) from the definition of the fuzzy ultrametric.

Proposition 3.4. Every fuzzy ultrametric is a fuzzy metric.

Proof. Given t, s ∈ (0, 1) and x, y ∈ X , we obtain, by Lemma 3.2,

min{M(x, y, t),M(y, z, s)} ≤ M(x, z,max{t, s}) ≤ M(x, z, t + s). �

Let ϕ: (0,∞) → (0, 1) be any continuous increasing surjection. Suppose that d is an ultrametric on a set X such that
d(x, y) < 1 for all x, y ∈ X . DefineMd: X2 × (0,∞)→ [0, 1] as follows:

Md(x, y, t) = 1− d(x, y)+ d(x, y)ϕ(t).

Proposition 3.5. The function Md is a fuzzy ultrametric on X.

Proof. Conditions (i)–(iii) and (v) from the definition of fuzzy (ultra)metric are obviously satisfied.
We have to verify condition (iv′). Let x, y, z ∈ X , t, s ∈ (0, 1). Without loss of generality, we may assume that t ≥ s. The

proof splits in two cases.
(1) d(x, y) = d(x, z). Then

min{Md(x, y, t),Md(y, z, s)} = min{1− d(x, y)+ d(x, y)ϕ(t), 1− d(y, z)+ d(y, z)ϕ(s)}
≤ 1− d(x, z)+ d(x, z)ϕ(t) = Md(x, z,max{t, s}).

(2) d(y, z) = d(x, z). Then

min{Md(x, y, t),Md(y, z, s)} = min{1− d(x, y)+ d(x, y)ϕ(t), 1− d(y, z)+ d(y, z)ϕ(s)}
≤ 1− d(y, z)+ d(y, z)ϕ(s) ≤ 1− d(y, z)+ d(y, z)ϕ(t) = Md(x, z,max{t, s}). �

For any Hausdorff topological space X , we denote by exp X the set of all nonempty compact subsets of X .

Proposition 3.6. Let (X,M, ∗) be a fuzzy ultrametric space. Then the Hausdorff fuzzy metric space (exp X,MH , ∗) is a fuzzy
ultrametric space.

Proof. We use the following definition of the Hausdorff metricMH on the set exp X , which is equivalent to the initial one. If
C,D ∈ exp X and t ∈ (0,∞), we let

MH(C,D, t) = 1− inf{r | C ⊂ B(D, r, t), D ⊂ B(C, r, t)}.

Let A, C,D ∈ exp X and s, t ∈ (0,∞). We have to show that

MH(A, C, s) ∗MH(C,D, t) ≤ MH(A,D,max{t, s}).

Without loss of generality, we assume that s ≤ t .
Suppose thatMH(A, C, s) > 1− r ,MH(C,D, t) > 1− r , for some r . Then alsoMH(A, C, t) > 1− r . Given a ∈ A, we see

that there exists c ∈ C such thatM(a, c, t) > 1− r . Similarly, there is d ∈ D such thatM(c, d, t) > 1− r . Then

M(a, d, t) ≥ min{M(a, c, t),M(c, d, t)} > 1− r,

and therefore A ⊂ B(D, r, t). One can similarly show that D ⊂ B(A, r, t), whenceMH(A,D, t) > 1− r and we are done. �

Let (X,M, ∗) be a fuzzy metric space. Given c ∈ (0, 1], define

c �M(x, y, t) = 1− c + cM(x, y, t), (x, y, t) ∈ X × X × (0,∞).

Lemma 3.7. For any fuzzy (ultra)metric M on X, the function c � M is a fuzzy (ultra)metric on X. The topologies generated by
M and c �M coincide.
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Proof. The verification that c �M is a fuzzy (ultra)metric, for any fuzzy (ultra)metricM , is easy and is left to the reader.
Let us use subscript c to denote the balls with respect to the fuzzy (ultra)metric c �M . Then we have

Bc(x, r, t) = y ∈ X | c �M(x, y, t) > 1− r
= y ∈ X | 1− c + cM(x, y, t) > 1− r = y ∈ X | M(x, y, t) > 1− (r/c)
= B(x, r/c, t),

if r ≤ c , and Bc(x, r, t) = X otherwise, whence the coincidence of the topologies follows. �

Let (X,M, ∗) be a fuzzy metric space. Let N denote, as usual, the set of positive integers. By XN we denote the countable
power of X . Define M̄: XN

× XN
× (0,∞)→ R as follows:

M̄((xi), (yi), t) = inf{(1/i)�M(xi, yi, t) | i ∈ N}.

Lemma 3.8. For any fuzzy (ultra)metric M on X, the function M̄ is a fuzzy (ultra)metric on XN. The topology generated by M̄ is
the product topology on XN (the topology on each factor is generated by M).

Proof. Let us verify property (v) from the definition of fuzzy (ultra)metric. Let t0 ∈ (0,∞). Let (xi), (yi) ∈ XN. There is
i0 ∈ N and a neighborhood U of t0 in (0,∞) such thatM(x1, y1, t) > 1− (1/i0), for all t ∈ U . Then, for any t ∈ U ,

M̄((xi), (yi), t) = min{(1/i)�M(xi, yi, t) | i < i0},

therefore M̄ is continuous on U .
The verification of the remaining properties from the definition of fuzzy (ultra)metric is straightforward.
Since

B̄((xi), r, t) =
∏
i∈N

B 1
i
(xi, r, t)

(here, B̄ stands for the ball with respect to the fuzzy metric M̄) and

B 1
i
(xi, r, t) = X

whenever 1i < r , we conclude that the topology on X
N generated by M̄ coincides with the product topology. �

Lemma 3.9. Let x, y ∈ X, r ∈ (0, 1), and t > 0. If B(x, r, t) ∩ B(y, r, t) 6= ∅, then B(x, r, t) = B(y, r, t).

Proof. Let z ∈ B(x, r, t) ∩ B(y, r, t). Then

1− r < min{M(x, z, t),M(y, z, t)} ≤ M(x, y, t),

whence y ∈ B(x, r, t).
Now if z ∈ B(y, r, t), then similarly

1− r < min{M(x, y, t),M(y, z, t)} ≤ M(x, z, t),

whence z ∈ B(x, r, t). We conclude that B(y, r, t) ⊂ B(x, r, t). Analogously, B(y, r, t) ⊃ B(x, r, t). �

Corollary 3.10. Every ball B(x, r, t) is an open and closed set (i.e., a clopen set).

Recall that a topological space is called zero dimensional if there is a base for the topology of this space consisting of clopen
sets.
The following statement is a counterpart for fuzzy ultrametric spaces of that of the zero dimensionality of ultrametric

spaces.

Proposition 3.11. Every fuzzy ultrametric space is zero dimensional.

Proposition 3.12. Suppose that t ≥ s. Then every open r-ball for t is a union of open r-balls for s.

Proof. Let y ∈ B(x, r, t) and z ∈ B(y, r, s). ThenM(x, y, t) > 1− r andM(y, z, s) > 1− r and we obtain

1− r < min{M(x, y, t),M(y, z, s)} ≤ M(x, z,max{t, s}) = M(x, z, t),

whence z ∈ B(x, r, t). We have proven that B(y, r, s) ⊂ B(x, r, t), whence the result follows. �

In [10], the following uniform structure is defined for a fuzzy metric space (X,M, ∗):

U = {{(x, y) | x ∈ B(y, 1/n, 1/n)} | n ∈ N}.

Recall that a uniform space is of uniform dimension≤ n (see, e.g., [11]), if each of its uniform covers admits a refinement
of dimension≤ n.
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Proposition 3.13. Any fuzzy ultrametric space is of uniform dimension zero.

Lemma 3.14. Let A be a compact subset of X, t0 ∈ (0,∞). For any ε > 0, there exists δ > 0 such that, if x, y ∈ A and
|t − t0| < δ, then |M(x, y, t)−M(x, y, t0)| < ε.

Proof. It is known (see [4, Proposition 1]) that themapM: X×X× (0,∞)→ [0, 1] is continuous. Therefore, the restriction
M|(A× A× J), where J is a segment in (0,∞) containing t0 is uniformly continuous, whence the assertion follows. �

3.1. Extension of fuzzy ultrametrics

Theorem 3.15. Let X be a fuzzy separable zero-dimensional metrizable space, A a closed subset in X with |A| ≥ 2. Let M be a
fuzzy ultrametric on A compatible with its topology. Then there exists a fuzzy ultrametric M ′ on X that extends M and generates
the topology on X.

Proof. Let M̄ be a fuzzy ultrametric on AN defined by the formula:

M̄((xi), (yi), t) = inf{(1/i)�M(xi, yi, t) | i ∈ N}.

There exists an embedding j: X → AN such that j(a) = (a, a, a, . . .), for every a ∈ A.
DefineM ′: X × X × (0,∞)→ R by the formula:

M ′(x, y, t) = M̄(j(x), j(y), t).

Clearly,M ′ is a fuzzy ultrametric on X generating its topology. Since, for every x, y ∈ A, we have

M ′(x, y, t) = M̄((x, x, x, . . .), (y, y, y, . . .), t)
= inf{(1/i)�M(x, y, t) | i ∈ N} = M(x, y, t),

and thereforeM ′ is an extension ofM .
Since j is an embedding,M ′ generates the topology of X . �

4. Main result

Given a fuzzy ultrametric space (X,M,min), define a function M̂: P(X)× P(X)× (0,∞)→ [0, 1] by the formula:

M̂(µ, ν, t) = 1− inf{r ∈ (0, 1) | µ(B(x, r, t)) = ν(B(x, r, t)), for every x ∈ X}.

Note that, one can only require that x ∈ supp(µ) ∪ supp(ν) in this formula.

Theorem 4.1. The function M̂ is a fuzzy ultrametric on the set P(X) (with respect to the t-norm min).
Proof. Conditions (i) and (iii) from Definition 2.2 are obviously satisfied.
Let us verify condition (ii). Clearly, M̂(µ,µ, t) = 1, for every µ ∈ P(X) and t > 0. Conversely, if M̂(µ, ν, t) = 1, then

µ(B(x, r, t)) = ν(B(x, r, t)), for every x ∈ X , r ∈ (0, 1) and t > 0. Because of σ -additivity, we conclude that the values ofµ
and ν coincide on all Borel subsets of X . In turn, this implies that µ = ν.
Let us verify Condition (iv′) from Definition 3.1. Let µ, ν, τ ∈ P(X), t, s ∈ (0,∞). Suppose, without loss of generality,

that max{t, s} = t .
If M̂(µ, ν, t) > 1 − r and M̂(ν, τ , s) > 1 − r , then µ(B(x, r, t)) = ν(B(x, r, t)), for all x ∈ X . Also, ν(B(x, r, s)) =

τ(B(x, r, s)), for all x ∈ X , and, since every ball of radius r for t is the union of disjoint family of balls of radius r for s (see
Proposition 3.12), we conclude, because of the additivity of the measures, that ν(B(x, r, t)) = τ(B(x, r, t)), for all x ∈ X .
Therefore,

µ(B(x, r, t)) = ν(B(x, r, t)) = τ(B(x, r, t)),

for all x ∈ X , whence M̂(µ, τ , t) > 1− r and the result follows.
We are now going to verify condition (v) from Definition 2.2. Let µ, ν ∈ P(X), t0 ∈ (0,∞) and M̂(µ, ν, t0) = 1− r0.
Let (ti)∞i=1 be a nondecreasing sequence in (0,∞) with limi→∞ ti = t0. Let M̂(µ, ν, ti) = 1 − ri, i = 0, 1, 2, . . .. Then

(ri)∞i=1 is a nonincreasing sequence in (0, 1] (see Remark 3.3). Suppose that r
′

0 = limi→∞ ri > r0 + 2c , for some c > 0.
Then µ(B(x, r0 + c, t0)) = ν(B(x, r0 + c, t0)), for all x ∈ X . By Lemma 3.14, there exists η > 0 such that, for every

x, y ∈ supp(µ) ∪ supp(ν), we have

|M(x, y, t0 − η)−M(x, y, t0)| < c.

There exists i ∈ N such that ti > t0 − η. We are going to show that

B(x, r0, t0) ∩ (supp(µ) ∪ supp(ν)) ⊂ B(x, r0 + c, ti).

Indeed, if y ∈ B(x, r0, t0) ∩ (supp(µ) ∪ supp(ν)), thenM(x, y, t0) > 1− r0, whenceM(x, y, ti) > 1− r0 − c and therefore
y ∈ B(x, r0 + c, ti). Now, if y ∈ B(x, r0, t0) ∩ (supp(µ) ∪ supp(ν)), then y ∈ B(y, r0, t0) = B(x, r0, t0) ⊂ B(x, r0 + c, ti).
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We therefore conclude that every set B(x, r0 + c, ti) ∩ (supp(µ) ∪ supp(ν)), where x ∈ supp(µ) ∪ supp(ν) is a disjoint
union of the sets of the form B(y, r0, t0) ∩ (supp(µ) ∪ supp(ν)), where y ∈ supp(µ) ∪ supp(ν). Since µ and ν are additive
set functions, we have

µ(B(x, r0 + c, ti)) = µ(B(x, r0 + c, ti) ∩ (supp(µ) ∪ supp(ν)))
= ν(B(x, r0 + c, ti) ∩ (supp(µ) ∪ supp(ν))) = ν(B(x, r0 + c, ti)),

for all x ∈ supp(µ) ∪ supp(ν). Therefore, M̂(µ, ν, ti) ≤ 1 − (r0 + c) < 1 − r ′0, and we obtain a contradiction with the
assumption r0 < r ′0.
Next, we consider the case of a nonincreasing sequence (ti)∞i=1 in (0,∞) with limi→∞ ti = t0. Then (ri = 1 −

M̂(µ, ν, ti))∞i=1 is a nondecreasing sequence in (0, 1] (see Remark 3.3). Suppose that r
′

0 = limi→∞ ri < r0. There exists
c > 0 such that r ′0 + 2c < r0.
By Lemma 3.14, there exists η > 0 such that, for every x, y ∈ supp(µ) ∪ supp(ν), we have

|M(x, y, t0 + η)−M(x, y, t0)| < c.

There exists i ∈ N such that ti < t0 + η. Arguing as above, we conclude that

B(x, r ′0, ti) ∩ (supp(µ) ∪ supp(ν)) ⊂ B(x, r
′

0 + c, t0).

This, in turn, implies that M̂(µ, ν, t0) ≥ 1− (r ′0 + c) > 1− r0 and we obtain a contradiction. �

Identifying every x ∈ X with the Dirac measure δx, one may regard X as a subset of P(X).

Proposition 4.2. Let (X,M, ∗) be a fuzzy ultrametric space. Then the fuzzy ultrametric M̂ induces the fuzzy ultrametric M on
X ⊂ P(X).

Proof. Let x, y ∈ X . If M̂(δx, δy, t) = 1 − r , then, for any r ′ > r , we have 1 = δx(B(x, r ′, t)) = δy(B(x, r ′, t)), whence
y ∈ B(x, r ′, t) and thereforeM(x, y, t) > 1− r ′. Passing to the limit as r ′ → r , we see thatM(x, y, t) ≥ M̂(δx, δy, t).
On the other hand, if r ′ < r , then there is z ∈ X such that δx(B(z, r ′, t)) 6= δy(B(z, r ′, t)). Without loss of generality, one

may assume that

1 = δx(B(z, r ′, t)).

Then y 6∈ B(z, r ′, t) = B(x, r ′, t), whence M(x, y, t) ≤ 1 − r ′. Passing to the limit as r ′ → r , we see that M(x, y, t) ≤
M̂(δx, δy, t). �

Proposition 4.3. The set Pω(X) is dense in P(X) in the topology induced by the fuzzy ultrametric M̂.
Proof. Let µ ∈ P(X), r ∈ (0, 1), t > 0. Consider an open coverU = {B(x, r, t) | x ∈ supp(µ)} of the set supp(µ). Since the
set supp(µ) is compact, there exists a finite subcover {B(xi, r, t) | i = 1, . . . , k} ofU. Let ν =

∑k
i=1 µ(B(xi, r, t))δxi . Then

ν ∈ Pω(X).
We are going to show that M̂(µ, ν, t) > 1−r . To this end, consider B(z, r, t), for z ∈ X . If z ∈ ∪{B(xi, r, t) | i = 1, . . . , k},

then, using Lemma 3.9 one can suppose that z = xi, for some i = 1, . . . , k. Then

ν(B(z, r, t)) = µ(B(z, r, t)) = µ(B(xi, r, t)).

If z 6∈ ∪{B(xi, r, t) | i = 1, . . . , k}, then, using Lemma 3.9 again, one can show that also

B(z, r, t) ∩ ∪{B(xi, r, t) | i = 1, . . . , k} = ∅,

whence ν(B(z, r, t)) = µ(B(z, r, t)) = 0.
We conclude that M̂(µ, ν, t) > 1− r and therefore ν ∈ B(µ, r, t). �

Proposition 4.4. The map supp: P(X)→ exp X is nonexpanding.

Proof. Let µ, ν ∈ P(X) and M̂(µ, ν, t) > r0, where r0 ∈ (0, 1). Then from the definition of M̂ it follows that there exists
r < 1− r0 such that ν(B(x, r, t)) = µ(B(x, r, t)), for all x ∈ X .
Suppose that z ∈ supp(µ), then from the definition of support it follows that ν(B(z, r, t)) = µ(B(z, r, t)) > 0 and

therefore there exists z ′ ∈ supp(ν) such that z ′ ∈ B(z, r, t).
Therefore, supp(µ) ⊂ B(supp(ν), r, t). One can similarly show that supp(ν) ⊂ B(supp(µ), r, t).
This implies that

MH(supp(µ), supp(ν), t) > 1− r > 1− (1− r0) = r0

and we conclude that the map supp is nonexpanding. �

Proposition 4.5. Let (X,M, ∗), (X ′,M ′, ∗) be fuzzy ultrametric spaces and let f : X → X ′ be a nonexpandingmap. Then the map
P(f ): P(X)→ P(X ′) is also nonexpanding.



136 A. Savchenko, M. Zarichnyi / Topology 48 (2009) 130–136

Proof. We are going to show that, for every µ, ν ∈ P(X) and t > 0, if M̂(µ, ν, t) > % then M̂ ′(P(f )(µ), P(f )(ν), t) > %.
Given M̂(µ, ν, t) > %, one can find r ∈ (0, 1) such that 1 − r > % and µ(B(x, r, t)) = ν(B(x, r, t)), for all x ∈ X . Since

themap f is nonexpanding, we see that f (B(x, r, t)) ⊂ B′(f (x), r, t) (by B′ we denote the balls in X ′), whence, by Lemma 3.9,
for every y ∈ X ′, the set f −1(B′(y, r, t)) is a union of disjoint balls of the form B(z, r, t) in X . Therefore, from the σ -additivity
of µ and ν, it follows that

P(f )(µ)(B′(y, r, t)) = µ(f −1(B′(y, r, t)))
= ν(f −1(B′(y, r, t))) = P(f )(ν)(B′(y, r, t)),

for all y ∈ X ′, whence M̂ ′(P(f )(µ), P(f )(ν), t) > %. �

It is easy to see that from Proposition 4.5 it follows that P is a functor from the category F MS(∗) to itself. One can
also prove the same for the hyperspace construction exp. Then, from Proposition 4.4 one can deduce that supp is a natural
transformation of the functor P into the functor exp.

5. Remarks and open questions

In [12] the functor of idempotent measures in the category of ultrametric spaces is defined. We conjecture that a
counterpart of this functor can be defined also for fuzzy ultrametric spaces.
In [4] it is proved that the hyperspace of a fuzzy metric space is complete if and only if the space itself is complete.

Recall (see [2]) that a fuzzy metric space (X,M, ∗) is complete provided that every Cauchy sequence in X is convergent with
respect to the topology τM , where a sequence (xn)n∈N in X is said to be Cauchy if for each r ∈ (0, 1) and each t > 0 there
is n0 ∈ N such that M(xn, xm, t) > 1 − r for all n,m > n0. We leave as an open problem that of completeness (as well as
completability) of the fuzzy ultrametric spaces of probability measures considered in this paper.
In [13], a notion of intuitionistic fuzzy metric space is introduced and studied. See [14] for connections between fuzzy

metric spaces and intuitionistic fuzzy metric spaces. In particular, in [14], an intuitionistic fuzzy metric is considered on the
hyperspace of an intuitionistic metric space. We formulate the problem of existence of an intuitionistic fuzzy metric on the
set of probability measures on intuitionistic fuzzy metric spaces.
It is interesting to compare the weak∗ topology on the set P(X) and the topology generated by the fuzzy ultrametric.
In connection with Theorem 3.15, the following two questions arise:

Question 5.1. Can one drop the condition of separability of the space X?

Question 5.2. Is there a counterpart of this theorem for the uniform spaces?

We finish with the problem of proving similar results for the idempotent measures (see [12]).
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