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Abstract. The structural stability of a mathematical model with respect to small 

changes is a necessary condition for its correctness. The same condition is also 

necessary for the applicability of numerical methods, a computational experiment. 

But after S. Smale’s works it became clear that in smooth dynamics the system of 

a general form is not structurally stable, therefore there is no strict mathematical 

basis for modeling and computational analysis of systems. The contradiction 

appeared in science: according to physicists dynamics is simple and universal. 

The paper proposes a solution to this problem based on the construction of 

dynamic quantum models (DQM). DQM is a perturbation of a smooth dynamical 

system by a Markov cascade (time is discrete). The dynamics obtained in this 

way are simpler than smooth dynamics: the structurally stable DQM realizations 

are everywhere dense and open on the set of all DQM realizations. This 

dynamics in contrast to the classical one has a clear structural theory, which 

makes it possible to construct effective algorithms for study of concrete systems. 

For example this paper shows the use of computer simulation for rigorous proof 

of hyperbolicity of the Henon system attractor. On the other hand, when 

fluctuations tend to zero, i.e. in the semiclassical limit, the dynamics of the DQM 

goes into the initial smooth dynamics. In this paper the equivalence of structural 

stability and hyperbolicity for smooth discrete dynamical systems is established 

along this path. 
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1 Introduction 

 
Computational modeling derives from two steps: (i) modeling, i.e. finding a 
model description of a real system, and (ii) solving the resulting model 
equations using computational methods [1]. Computational modeling has 
been used in physics, chemistry and related engineering for many decades 
because in practice hardly any model equations of systems of interest can be 
solved analytically, and this is where the computer comes in [2].  

However, if an arbitrarily small perturbation of the model leads to a qualitatively different 

picture of the dynamics, then such a model is not applicable to the real process: strictly 

speaking, perturbations are included in the definition of a model. Therefore traditionally the 

stability of a mathematical model with respect to relatively small changes is a necessary 

condition for its correctness [3]. The same stability condition is 



 
 
 
 
 
 

 

necessary for applicability of numerical methods, computational experiments since 

they inevitably lead to errors of discretization and rounding in calculations [4]. 

The qualitative invariance of a mathematical model under small perturbations is 

usually called structural stability. This formally means equivalence, in some exact 

sense, between the model and its small enough perturbation. For the smooth 

dynamical systems (sets of differential or difference equations) this equivalence is 

usually a homeomorphism between the phase portraits of these systems. Such theory 

of a structural stability going back to H. Poincare, has been developed by A.Andronov 

and L. Pontrjagin in the case of small dimension of the phase space (1 or 2) [5]. 

However, the optimism generated by the successes of this theory disappeared after S. 

Smale's works [6]. It was shown in [7] that when the phase space has larger 

dimension, then there exist smooth dynamic systems whose neighborhoods do not 

contain any structurally stable system. For the theory of smooth dynamical systems (its 

old name is the qualitative theory of differential equations) this result has the same 

value as Liouville’s theorem on insolvability of the differential equations in quadratures 

has for the theory of their integration. Namely, it shows that the problem of full 

topological classification of smooth dynamical systems is hopeless. This means also 

that there is no strict mathematical basis for modeling and computational analysis. The 

contradiction has appeared in science, because physicists believe that the dynamics is 

simple and universal [8].  
The paper proposes solution to this problem, based on the construction of 

dynamic quantum models (DQM). It turns out that taking into account random 
fluctuations, necessary for the transition to the quantum model of reality, 
allows us to return in fact to the simple picture of A. Poincare’s dynamics: a 
dense set of structurally stable systems.  

DQM is so named because for Hamiltonian systems it is simply related to the 

corresponding Schrödinger equation, and its construction is the basis of the 

method for solving spectral problems [9]. But the definition of DQM is not formally 

related to Hamiltonian systems; it is defined for any ordinary differential equation 

or any diffeomorphism on any smooth Riemannian manifold.  
The structural stability of the general form DQM opens the way to a 

mathematically grounded numerical analysis of the dynamics. As an example, this 

paper shows the use of computer simulation for rigorous proof of hyperbolicity of 

the Henon system attractor [10] at certain values of parameters. DQM is the 

natural basis for solving the traditional problems of machine learning [11].  
On the other hand, when fluctuations tend to zero, i.e. in the semiclassical 

limit, the dynamics of the DQM goes into a more complex initial smooth dynamics. 

The old problem – the equivalence of structural stability and hyperbolicity for 

smooth discrete dynamical systems [12] is established by this way in this paper.  
The paper goal is 1) to build the foundations of the theory of dynamic 

quantum models (DQM); 2) to demonstrate the application of this theory for 
computer research of concrete systems and for solving traditional problems of 
the theory of smooth dynamical systems.  

The paper is organized as follows: in part 2 we synthesize the dynamic quantum 

models (DQM), in section 2.2 we define the DQM attractor, show the uniqueness of 

this definition and establish properties of the DQM attractor; in part 3 we show that 

structurally stable realizations of DQM are dense and open on the set of all its 



 
 
 
 
 
 

 
realizations; in part 4 we demonstrate the use of computer modeling for rigorous 

proof of hyperbolicity of the attractor of Henon system; part 5 concludes. 

We had to omit proofs of some theorems in order to fit the paper format. 
 

 

2 The Dynamic Quantum Model: Basic Definitions 

 
2.1  DQM Definition 

 
Let p(x) be an n -dimensional smooth vector field on an n -dimensional smooth 

Riemannian manifold M , where x(x1 , x2 ,..., xn ) are local Euclidean coordinates on 

M , p (x)   C  (Rn ) ( i   1,..., n ).  On  each  phase curve x(t)   M  of  the 
i            

dynamical system generated by this vector field            

 dxi pi (х) ,   ( i  1,..., n ) 
    

(1) 
 

       

 dt            

     t       

consider the integral of the “shortened action” s(t) p(x)dx 
 

p(  ) 
 

 

 

2 d , 
   

     
          

   х(t ) 0          
n 

where  p(  )  2
 pi

2 ( ) . The value of s(t) on each curve x(t) , which is different 
i  1  

from a fixed point, is diffeomorphically expressed in t and is called “optical time”. 

Let be a metric such that s(t) d : d  p(t)  2 dt . The following is the heuristic 
 

х(t )  
derivation or explanation of the definition of dynamic quantum model (Definition 1). So, 

the distance d traveled by a point along the path of (1) during the time t is 
t  

equal to  d      p(  )d      p(tc )    t , where  pc p(t0 ) is the average value  
0  

(0 t0 t) . (Of course this is with a single bypass of trajectory during t : turning points 

are the special case). Further, we assume that the fluctuations generate “white  
noise” , acting on the configuration space with the dispersion = 2t ,  

 

where the diffusion coefficient 
2
 is constant over the considered time interval. It will 

take some time t , until the point moves to a distance d from the initial position, which 

exceeds the mean square error caused by (t) during the time t , i.e.  pc  t   

will exceed  
    2

 t . With such a minimal t   pc   t =     t , whence 
2 

  

 pc 
 2

 t and therefore 

(t) D  (t) 



 

∆   =  
2 

, = ‖   ‖∆   =  2 (2) 
‖   ‖2 ‖   

 

‖      

        

Here by assumption   t is the minimal time interval after which it becomes possible  
to make a new measurement, the difference from which will exceed the error, i.e. get a  

significantly different measurement. Owing to (2) 
2  pc 

 2 t t  p( )  2 d s( t) . 

Thus 1) the time interval between the 
0  

nearest significant measurements is unchanged on the optical time scale and is equal to  
2
 . (In other words, the distance between them in the metric is equal to 

2
 ). 2) 

During this time “white noise” (t) generates an irremovable random error, the 
 

standard deviation of which is equal to the distance d between the nearest 

significant measurements along the trajectory.  
So, a dynamic quantum model first shifts each point along the phase curve of 

a given dynamic system over the optical time 
2
 (or ρ – length 

2
 ), and then 

randomly shifts on a distance not exceeding the length of the trajectory from the 

original to the new point. The following rigorous definition summarizes this 

description. The definition of a dynamic quantum model is given for an arbitrary 

dynamic system (1) on an arbitrary compact Riemannian manifold M .  
Let G be the shift map along the phase trajectories of (1) during the lag 

time t . Consider a smooth function q( y, z) 0 ( y, z M ) such that 

 
 

z  Gy 

 

 

 

d ( y) ,q( y, z)dz   1,  zq( y, z)dz   Gy  d ( y) ,    (3)    
   

     M  M   

where  d ( y)   0 is a continuous function on M . Here q( y, z) defines the density 
 

of “local random dissipation caused by white noise,” the numbers d ( y) are assumed 
 

to  be  small.  Of  course,  the  function  q( y, z)  can  also  be  assumed continuous, 

approximating it on M  with a smooth function for any given accuracy. Then 

Definition 1. The Markov process with the transition function  

P( y, A)q( y, z)dz  ( A   M ) (4) 
A  

 
is called the dynamic quantum model (DQM) for the dynamic system (1). Given the 

initial distribution, we obtain a Markov process P with this initial distribution and the  

transition function P( y, A) : if t is the distribution at time t , t is the lag between 

the two nearest measurements, then the DQM sets new distribution P( t ) t t 

at time t t . 



 
 
 
 
 
 

 

Thus, based on the differential equations (1), we arrive at difference equations with 

a lag of at least 
2
 on the optical time scale. At first glance, the DQM may surprise with 

the discreteness of time: in the traditional model of quantum mechanics errors are 

explicitly taken into account only for spatial variables. But, as can be seen from the 

deduction, the discreteness of the measurement process is an inevitable consequence 

of the unavoidable errors of coordinates and pulses. Indeed, to measure time 

ultimately requires a clock or other device in which readings on a scale are measured 

in proportion to time at a certain speed. But if these readings and speed are 

determined inaccurately, then the time is also known only with some error.  
Definition 2. Let i be cells with a diameter of some partition of the phase space of 

a dynamical system and 0 is the initial state. Then the Markov chain with transition 

probabilities from   i  to   j equal to  pij =   1   

 
P( y,   j ) d  0  

will be called 
     

   
0 
( )   

   i  y 
        i 

the   - discretization of DQM with transition function P( y, A) and initial state   0 . 

 

2.2  DQM Attractor 
 

Attractor is the key concept of the theory of dynamical systems; its physical 
meaning is that it is “the space of steady-state regimes”. The point of the 
phase space is contained in the attractor if it belongs to the carrier of the 
“stationary state of the system”, i.e. to a measure not changing over time. 

Let M be a compact phase space, P is some DQM on M . 

Definition 3. The probability measure on M will be called the stationary 

(equilibrium) state of DQM if P( ) . The DQM attractor is the union of the 
 

carriers of all stationary states. 
Theorem 1. (Perron-Frobenius theorem for DQM). Let M be an invariant 

closed set of DQM P that does not contain its own invariant closed subsets 

(that is minimal with respect to P ). Then 
 

1. there is a unique stationary state , whose carrier is . The state is ergodic (that is the 

flow P is ergodic with respect to measure ). 
 

     

1 
n 

2. For any other state (probability measure) onlim Pk     =   . 
 

    n      n k  1 

3. If is a probabilistic stationary measure of some   - discretization of the given 

 DQM onthen lim =   .    
  0     

 
Proof. Let M be an invariant closed set of DQM that does not contain its own 

invariant closed subsets. Let be a stationary measure of some discretization of the 
 

given DQM on with cells of diameter (that is, a probability invariant measure of a 

Markov chain defined by Definition 3). On a compact subset of the phase space 



 
 
 
 
 
 

 

the set of probability measures  R R( ) forms a convex metrizable compact in the 
 

weak  topology.  Therefore  in  any  sequence  of  measures k one  can  find  a 

subsequence  , converging to some measure  from R : lim  =  R in the 
  n        n n 

sense of the weak topology on R . Since P    0 (in the sense of the 
   n     n   n    0    

weak topology) by virtue of definition 3, then P    i.e.  is a stationary state of  
DQM. Since by the condition does not contain non-empty proper invariant subsets  

of DQM (i.e. it is metrically transitive), then for any  P -invariant measure on the 

ergodic Neumann theorem holds: for any continuous function  f  on  

 1 n       
L2     lim 

 

f (Pk ) 
 

fd 
 

 

(5)  

  

n       

 n k  1         
Since left side of this equality does not depend on the choice of a sequence of measures  

k , then any weakly convergent sequence n converges to the same measure  . 

Therefore lim and it proves 3). Since (5) holds for any stationary state on 
      0    

 

    

, then from (5) the uniqueness of an invariant measure also follows, which 

establishes 1).  Finally, since  for  any  other probability measure on  

   1  n 
k         

lim     P    exists by virtue of (5) and is an invariant measure, then it coincides     

n      n k  1          

with  , which proves 2), QED.    

k 

  

Obviously, there are only finitely many components of the DQM attractor on   
M , that is such invariant subsets of the attractor that do not contain proper invariant 

non-empty subsets. On each component k of the DQM attractor there is a unique  

probability invariant measure k : P k k . The density of k is positive on the 

interior of k by the definition of DQM. Any stationary state on M is a convex 

combination of stationary states k on k . 
 

Let G be shift map along the phase trajectories of (1) during the lag time of DQM.  

Definition 4.  For  the  DQM  trajectoryfor  the time tn : y0 , y1,..., yn   its 

differential  is Dn (  )   DG( yn ) ... DG( y1 ) DG( y0 ) where DG( yk )  is  the 

differential of G at the point  yk, k   n   0,1,... . For the DQM trajectory   : 

y n ,..., y 1, y0  differential Dn (  )   DG( yn ) ... DG( y1 ) DG( y0 ) at n   0,1,... . 

The measure    , induced by the measure     in accordance with the Kolmogorov 
 

theorem [13], is defined on the space of DQM trajectories on the component 
of the DQM attractor. 



 
 
 
 
 
 

 

Theorem 2.  
m dim M . 
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Then 

 
 
 
 
 
 

 

for 

 
 
 
 
 
 

 

M is a component of the DQM attractor of dimension  
DQM with sufficiently small d min d ( y) (where 

y  
d ( y) 0 are constants from (3)) 

 

1. for almost all under measure DQM trajectories at any nonzero vector u Rm (u  1) 
there are limits  

 
 

lim 
1

 ln Dn ( )u r , 
 

n n 

where r 1,2,..., s m dim M . 
 

2. At each point of each such trajectory , the filtering of subspaces is uniquely 

defined: 

 

    forward L ( y)   L ( y)   ...   L ( y)   Rm 
   

             1 2  s    

    and back  L ( y)   ...   L ( y)   L ( y)   Rm ,  
                     s 2 1    

    associated with the numbers   12...    s  so that 

lim 1 ln 
 

 

 
D (  )u 

 

 

 

   u   L ( y) and u   L 
 
( y) ,     

 
   

nn 
        n         r r r  1   

                       

lim 
 
1 ln 

 

 

 

D (  )u 
 

 

 

u   L ( y) and u   L ( y) .  
    

  

nn 
        n         r r  r  1  

                       

These filtrations are invariant with respect to the DQM differential. Exactly if yn  

and  yn  1 are consecutive points of the trajectoryat times tn and tn  1  respectively 

then the differential DG( yn ) translates the filtering at the point yn  in the filtering at 

the point yn  1 . 
 

Proof. Consider DQM on as a random process X (t, ) , where t is discrete 

time, t tk , k 0, 1, 2,..., is a DQM trajectory. Namely, for k M let η = 
 

(...,   k ,...,   1 ,  0 ,  1 ,...,  k ,...) . Then the DQM trajectory(t, y0 ) with an 
 

initial  point   y0     M is  the sequence X (t0 ,  )   y0 , X (t1 ,  )   y1     Gy00 , 

X (t2 ,  )   y2     Gy11 , …, X (tk ,  )   yk     Gyk  1k  1 ,…  .  (Here  d  is 

assumed to be so small that the addition of Gyk  1 k 1 when k    d  performed   

on the local map of the manifold M in Rm
 ). Thus, the DQM trajectory is 

defined uniquely by a sequence of vectors η and an initial point y0 : ( y0 , η0). 



 
 
 
 
 
 

 

On the set of DQM trajectories  X (t, ) on induces the dynamic process 
 

T – the trajectory of the trajectories: T  01 , T  1       2 , …, T  k  1k , … . 
 

Namely if 0 ( y0 , η0), where y0 X (t0 , 0 ) , η0 (..., k ,..., 1,  0 ,  1,...,  k ,...)  

and 1 ( y1 , η1), then y1 Gy0 0 X (t1 , 0 ) , η1 = R η0, where R is shift operator to 

the right. If 2 ( y2 , η2) then y2 Gy1 1 X (t2 , 0 ) , η2 = R η1; in the general case 

for k ( yk , ηk) we get yk Gyk 1 k 1 X (tk , 0 ) , ηk = 

= R ηk-1. By the Kolmogorov theorem on the set of DQM trajectories on the 
probability measure was determined, induced there by a stationary state on .   

By construction measure inherit from measure the invariance with respect to T (   

(T )) and ergodicity of T (i.e. its metric transitivity) under measure   .   

Let a(n, ) Dn ( ) for ( y0 , η). Then a(n, ) are measurable functions on a 

probability space with measure and a(n k, ) a(k,T 
k
 ) . 

 
This means that the square matrices a(n,  ) of order m are a multiplicative cocycle 

on the space of trajectories with respect to its automorphism T  by the definition 

of the cocycle [11]. Since G is a diffeomorphism, then 
 

 

 

DG( y) 
 

 

 

0 for all  y,     

whenceln( 
 

 

 

DG( y) 
 

 

 

) is   continuous function 

 

on   compactand      
                    

ln  DG( y)d. On the other hand by definition a measure for any open 
 

y  
subset C with the characteristic function C 

 

C d({( y,  ) y   C}) =   ({y y   C}) =C d  .   
  M 

Therefore for any piecewise continuous function g  on  M    g d  =   g d  .  In 
    M 

particular  sincea(0,  )   DG( y)  on  each trajectory( y,  η),  then   

ln 
 

a(0,  ) 
 

d  = ln 
 

 

 

DG( y) 
 

 

 

d. This inequality means that the cocycle       
          

 y   
a(n, ) is Lyapunov and this is the condition under which the multiplicative ergodic 
theorem for this cocycle holds.  

This theorem asserts that almost all trajectories under measure are 

Lyapunov correct. This means, in particular, that 
 
 

1.  for such with u Rm  (u   1) there are limits 



 
 
 
 
 
 

 

lim 1 ln 
 

 

 

a(n,  )u 
 

 

 

(  ) ,     
 

nn 
        r 

         

where r   1,2,..., s   s(  )   m .          

2.  On each such trajectory   , the filtering of subspaces is uniquely defined: 
 

     forward L ( y)   L ( y)   ...   L ( y)   Rm      
               1 2 s       

     and back L ( y)   ...   L ( y)   L ( y)   Rm ,    
                     s 2 1      

     associated with the numbers   12...s ( s   s(  ) )  so that 

lim 1 ln 
 

 

 
a(n,  )u 

 

 

 

  u   L ( y) and u   L 
 
( y) , 

  

    
   

     

nn 
                r r r  1     

                        

lim 1 ln 
 

 

 

a(n,  )u 
 

 

 

u   L ( y) and u   L ( y) . 
  

    
  

    

nn 
            r r  r  1    

                  

T  nn  1 , These filtrations are invariant with respect to the automorphism T :  if 

then the cocycle a(n,  ) takes the filtration   n  to the filtration   n  1 .   
Since by the Kolmogorov theorem flow  T on a probability space with a 

measure  inherits ergodicity from ergodicity P onwith a measure  , which was   

established in Theorem 1. Then the values of r ( ) r , s( ) s coincide for almost 

all DQM trajectories under measure . In view of the correspondence a(n, ) Dn 

( ) the theorem immediately follows from here, QED. 
 

By analogy with the theory of smooth dynamical systems the numbers r we will call 

the Lyapunov characteristic exponents of the component of the DQM attractor. 

 

3 Structural Stability in DQM 

 

Definition 5. The DQM realization is a sequence of smooth mappings Gk ( y) on  

in M ( k 0, 1, 2,... ) if Gk ( y) G( y)  C1 d ( y) d , where d(y) are the constants 

from (3).  
Here all the maps Gk ( y) are diffeomorphisms on Λ in Λ for sufficiently small d . 

 

In terms of content (tk , y) = Gk ( y) G( y) are small random deviations caused 
 

by “white  noise” at the point y at time tk . By definition, any DQM  trajectory 
 

( y0 , η):  yk Gyk  1 k ( k 0,  1,  2,... ) is given by the initial point  

y0 M and sequence of deviations η (..., k ,..., 1 ,  0 ,  1 ,...,  k ,...) . But on 



 
 
 
 
 
 

 

the DQM realization the function of deviations (tk , y) is fixed; therefore, on it 

the DQM trajectory with the initial point y0 is uniquely determined: ( y0 ) . 

Definition 6. A DQM realization  Gk ( y) ( k 0,  1,  2,... ) on a compact set 
 

K will be called a hyperbolic realization of DQM if at each point y Kk , 

where K0 K,Gk (Kk 1 ) Kk there exists a decomposition of the tangent bundle 
 

TKk   into the Whitney sum of the subbundles  Ek
s
 ( y) and  Ek

u
 ( y) : TKk  = Ek

s
 ( y) 

 

+ Ek
u ( y) , satisfying the following conditions: 

 

1. the tangent map DGk  preserves the subbundles: 
 

   DG (E s )   E s , DG (Eu )   Eu 
;    

   k   k   k  1            k k k  1     

2. DG  compresses E 
s
 : on every trajectorywith an initial point  y   K 

k 

at the 
 k  k                                    

 time moment  tk there are such constants   b   0 and (01)  that for any 

 u   Ek
s 

and any natural n                              
      

D (  )u 
 
 
 
b  n 

 
 
 
u 

 
 
 
    ( u   E 

s
 ( y) ). 

   
               
         n                         k     

3. DG  stretches Eu
 ( y) , more precisely, on each trajectorywith an initial point 

 k  k                                     

 y   Kk at the time moment tk for any u   Ek
u 

and a natural n    

     
D (  )u 

 
 1 

     
u 

 
 
 

( u   Eu
 ( y) ). 

   
          

   
   

              

      n         

b  n               k     

                                      

 Theorem 3. Hyperbolic realizations are everywhere dense on the set of DQM 

realizations. More precisely, for any DQM realization Gk ( y) ( k   0,  1,  2,... ) and 
     

0 there exists such hyperbolic realization 

   

for any sufficiently small  Gk ( y) of 

this DQM on the compact K, that                       

1. (  / K   K /  )for the probabilistic invariant DQM measure on; 
                                        

2. on Kk  Gk ( y)  Gk ( y)    C1( k   0,  1,  2,... ).     
          

 Definition 7. The realization of the DQM Gk (x) on a compact  Kand the 
  ~                  ~           

realization Gk (x) of this DQM on a compact  K are topologically equivalent if  
they are conjugate by means of homeomorphisms H k  defined on some neighborhoods 



 
 
 
 
 

 

   K
k , where 

~ ~ ~ 
,  K0 K , of the compacts Gk (Kk  1 )   Kk ,  Gk (Kk ) = Kk  1 

~ ~ ~ 

Hk Hk  1    Gk 

     

K0 K : Gk ( k   0,  1,  2,... ).      
 
 
 

 

Hk Hk + 1 

Gk 

Kk+1 Kk 

Fig. 1. Commutative diagram of topological equivalence. 

Definition 8. A DQM realization  Gk (x) on a compact  Kis structurally 

stable if any realization of this DQM sufficiently close to G (x) in C1 
topology for 

       k    

all k   0,  1,  2,... is topologically equivalent to it.    

In more detail: If for every point x   Kk there are numbers dk (x)   0 such that 
 ~   

 
 
 ~  

 
 
 

 

dk (x) for all k 
       

for any realization of this DQM Gk (x) from     Gk (x)  Gk (x)    C1 ≤ 
             ~  

and x   Kk  the topological equivalence of the realizations Gk  and Gk follows, then 

Gk is structurally stable.               
If all Gk (x) and all compacts K k coincide for all k , then we obtain the 

definition of the structural stability of a diffeomorphism. 

Theorem 4. Any hyperbolic realization of the DQM Gk on the compact set 

K is structurally stable. 
 

Corollary 1. A diffeomorphism G on a compact manifold M is structurally 

stable in the sense of Definition 8 if and only if it is (non-uniformly) hyperbolic. 
Proof. Let a diffeomorphism G be structurally stable. By Definition 8, this means 

d (x) d ~ x M  
that for some from G(x) G(x) C1 d (x) ( ) it follows 

~ 
that the diffeomorphisms G and G are topologically equivalent, that is, are conjugate 

on M by means of a homeomorphism. Consider DQM for G with the same d (x) in 

(3) for all  x M . By Theorem 1, this DQM has an attractor, let be a component 

~ 
of this attractor. By Theorem 3 there is a realization Gk (x) of this DQM, hyperbolic  
in the sense of Definition 6 on a compact set K , which differs from only by the 

order d on the measure of the stationary state on . Then by virtue of the 



 
 
 
 
 

 

~ 
structural stability of G every diffeomorphism Gk of this realization is conjugate to  
G in a neighborhood of . Therefore the realization with zero deviations, i.e. 

coinciding with G for each k , is also hyperbolic in in the sense of Definition 6, and 

the component itself is invariant with respect to G with accuracy . But then the 

complement M \ is invariant with respect to G with accuracy too. Unless it turns 

out that with this accuracy M , then on M \ we can similarly consider DQM for G 

with perhaps smaller than the earlier d ( y) . You can find there its 
 

component 1 and establish for realization Gk with zero deviations hyperbolicity in 

neighborhood of in the sense of Definition 6 1 as we did it early; and so on. In general 
 

let be the greatest G -invariant with accuracy subset in M , in which the realization 

with zero deviations Gk (x) is hyperbolic in the sense of Definition 6. If 
 

M with accuracy , then on M \ as above we can obtain a new component, in 

which the realization with zero deviations Gk is hyperbolic contrary to the 
 

assumption about    . Tending to zero, we obtain the hyperbolicity of the realization 

 

  

with zero deviations at almost all points x   M . In this case, generally speaking, Gk 

we have   inf d (x)   0 .  This means  the  non-uniform  hyperbolicity  of  the  

diffeomorphism G onto M .  
Conversely, the fact that the non-uniform hyperbolicity of a diffeomorphism  G  

onto M implies its structural stability in the sense of Definition 8 directly follows from 

Theorem 4, QED.    
~ 

    
  

 

  

 

 

C1( x   M ) follows 

     

Corollary 2. If for some 0 from   G(x)  G(x)    

that diffeomorphisms G and 
~        

G are topologically equivalent, then G is (uniformly) 

hyperbolic diffeomorphism on M .        

Proof. It follows from Corollary 1 that G is hyperbolic, in general, non-uniform. 

If  G  is hyperbolic exactly non-uniformly and so  inf d ( y)   0 for  d ( y) from 

definition 8, then we can get 
~  

G  with some diffeomorphism  G  inequivalent to 

 ~   

arbitrarily  small  perturbations. However  from   G(x)  G(x) C1  ( x   M )  
~ 

follows that G and G are topologically equivalent by the condition of the corollary.  
Therefore G is uniformly hyperbolic on M , QED. 



 
 
 
 
 
 

 

4 Example of DQM Application: Henon System Attractor 

 

For the two-dimensional M. Henon system [10]: (x, y) (1 y ax2 ,bx) values of 

parameters a 1.7, b 0.5 are chosen such that the hyperbolicity of dynamics on 

the attractor with this parameters is rigorously proved for R. Lozi system [14] 

(x, y) (1 y a x ,bx) . The proof of the hyperbolic dynamics here is based on 
  

the following statement, specifically focused on the study of concrete 
dynamical systems. For ease of application to the Henon system in the 
formulation we restrict ourselves to the two-dimensional case, although the 
multidimensional generalization is also true.  

Corollary 3. Let i be the cells of -discretization of the DQM attractor for the 

system given by the diffeomorphism G , xi i (1 i N ). Let the eigenvalues 
 

1 (xi ) and    2 (xi )  of the differential  DG  at each point xii   (1  i   N ) 

satisfy the conditions(x ),(x ) 1 for some ( 01) and 
 

          1i  2  i     

                 

          
 

(1)2    
, (6)           

4(4 
 

G 
 

2  

1) 
 

             

                
                     

where 

 

 

 

G 

 

 

 

2 is the norm of G in C 2 . Then 

     

         
                     

 

1. the initial system given by the diffeomorphism G is hyperbolic on its attractor; 

2. any DQM - realization of this system is hyperbolic on the DQM attractor and is 

topologically equivalent to the initial system;  
3. the support of the attractor of the initial hyperbolic system and the attractor of its 

DQM - realization coincide with an accuracy of order . 
 

The proof of this statement essentially reproduces the proof of Theorem 4, 
estimate (6) is actually obtained there. The verification of the conditions of 
Corollary 3 for the Henon system uses 4 Maple procedures. 

 
1. The Animate procedure visualizes system behavior using animation technologies in 

Maple. This allows you to localize the region of the phase space in which the 

system attractor is hypothetically contained. In the graph of next fig.2 for each 

iteration t shows the point in phase space of Henon system.  
On the basis of outcomes of the numerical researches, visually presented in Figure 

2, we choose a rectangle {(x, y) | 1 x 1.5; 0.1 y 0.1} . In next Figure 3 for 

each iteration t 1,2,...,500 of Henon system corresponds its coordinate x(t) 

on the ordinate axis. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Phase curve of Henon system.  
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Trajectory of Henon system. 

 

The animation in Figure 3 suggests that the system is hyperbolic. 
 

2. The Prestep procedure splits the rectangle into cells i - squares with sides of length 

0.01 parallel to the axes of coordinates (1 i N ).Then each cell i Prestep associates 

a set of cells into which points from i can fall into one step of 
 

the dynamics of the Henon system. In this case it is formally verified that the 

domain is indeed invariant with respect to the discretization of the DQM, given by 

the constructed partition of . In other words Prestep defines a topological Markov 

chain H , the state space of which is the set of cells i .  
3. The Findattr procedure finds in the attractor of a topological Markov chain H 

defined in Prestep. Its algorithm is based on the following consideration. On the 

state space { i } consider a transitive quasi-order relation: i j if there exists a 

trajectory H from i to j . The state i is recurrent if i i . Recurrent states are divided 

into equivalence classes: i ~ j i j i . 
 

On 
 
{ i } 

 
H( ) H2( ) 

 
H 3 ( ) ... H n ( ) . If 

 
H n ( ) 

 

H n  1 ( ) then  H n ( ) is the DQM attractor. In the case under consideration, the 
 

attractor turns out to be connected, which corresponds to Fig. 2, obtained by the 
Animate procedure. 



 
 
 
 
 
 

 

4. The Hyperproc procedure performs a main check: do the conditions of Corollary 3 
be satisfied on the attractor found by Findattr? For the Henon system under 

consideration  on a rectangle{(x, y) |  1  x  1.5;  0.1   y   0.1} we 
         

max{ 
    

obtain 
 

 

 

G 
 

 

 

2 
 

(2ax)2    b2     1, 2a}  6.1. The Hyperproc procedure     
         

 

     

DG eigenvalues 1 (xi )   0.4   and 

              

establishes   that for the differential 

2 (xi )   1.7  for all  xi i .  The value  1/1,7   0.59 .  Thus0.59 ;  
however, we choose the value 0.7 with a margin. Then, in accordance with (6), it is 

necessary that 0.00089 . 
 

Now the cell length of i (the length of a square with sides parallel to the axes of 

coordinates) is chosen equal to 0.0005 (1 i N ) and already for such a small  
partition of the rectangle we repeat the Prestep Findattr Hyperproc cycle 

described above. Now the other smaller cells are i , the other xi i and the other 
 

eigenvalues 1 (xi ) and 2 (xi ) respectively (1 i N ). If now again 1 (xi ) 0.4 and 2 

(xi ) 1.7 holds for all i , then (6) holds for such a partition and therefore 
 

Corollary 3 holds. In our case, the test was successful, which proves the hyperbolicity 

of the dynamics on the attractor of the Henon system for the values of the parameters 

a 1.7, b 0.5 . As a result, the structure of a topological Markov chain obtained in the  
course of computer calculations, by virtue of 2) and 3) of Corollary 3, gives 
detailed and rigorously proved data on the dynamics of this system.  

The selected values of the parameters a 1.7, b 0.5 are not the only ones. 

For example, similar results are obtained for a 1.4, b 0.35 . 

 

 

5 Conclusion 

 

The structural stability of a mathematical model is a necessary condition for 
its correctness. It is also necessary for applicability of numerical methods, 
computational experiments since they inevitably lead to errors.  

But after S. Smale's works it became clear that in smooth dynamics the system of 

a general form is not structurally stable and therefore there is no strict mathematical 

basis for modeling and computational analysis of systems. The contradiction appeared 

in science: according to physicists dynamics is simple and universal.  
The paper proposes a solution to this problem based on the construction of 

dynamic quantum models (DQM). DQM is a perturbation of a smooth dynamical 

system by a Markov cascade (time is discrete). The dynamics obtained in this 

way are simpler than the classical smooth dynamics: the structurally stable 

realizations of DQM are everywhere dense (Theorem 3) and open (Theorem 4) 

on the set of all DQM realizations. This dynamics has a clear structural theory: 

unlike the classical systems, the DQM attractor is uniquely defined (Theorem 1), 

Lyapunov exponents exist for any DQM (Theorem 2). 



 
 
 
 
 
 

 

As a Markov cascade, the DQM is approximated by a Markov chain and on 
a compact set by a finite Markov chain arbitrarily exactly (Theorem 1). This 
allows you to clearly understand the DQM dynamics and build effective 
algorithms for the study of concrete systems that are always oriented towards 
parallel computing and do not require stable (according to Hadamard) 
solutions. For example, in part 4 we demonstrate the use of computer 
simulation for rigorous proof of hyperbolicity of the attractor of Henon system.  

On the other hand, when fluctuations tend to zero, i.e. in the semiclassical 
limit, the dynamics of the DQM goes into the initial smooth dynamics. In part 3 
the equivalence of structural stability and hyperbolicity for smooth discrete 
dynamical systems is established along this path (Corollaries 1 and 2).  

In the future, we intend to apply the DQM algorithms, that oriented towards 
parallel computing and do not require stable solutions, to traditional problems 
of computational methods.  

We also intend to generalize dynamic quantum models on dynamical systems that 

using logical operations: proofs of theorems, software applications, information and 

network systems, etc. A natural and even obvious implementation tools for such a 

generalization are the specialized neural network. This will allow the use of DQM 

methods for problems of artificial intelligence: identification, prediction, filtering, etc. 

 

 

References 

 
1. Morrison, M. Models, measurement and computer simulation: the changing face of 

experimentation. Philosophical Studies, 143, 33–57 (2012).  
2. G. Dubois, Taylor, Francis (2018). Modeling and Simulation. CRC Press.  
3. Peschard, I. Modeling and Experimenting. In: P. Humphreys and C. Imbert (eds), Models, 

Simulations, and Representations. pp. 42–61 London: Routledge (2010).  
4. Yang, X. S. (2008). Introduction to Computational Mathematics. World Scientific.  
5. V. I. Arnold (1982). Mathematical methods of classical mechanics. Springer-Verlag. 

 
6. Teschl, Gerald (2012). Ordinary Differential Equations and Dynamical Systems. 

Providence: American Mathematical Society.  
7. Smale S. (1966) Structurally stable systems are not dense. Am. J. Math., 88, P. 491 – 496.  
8. Tesse E. (2011) Principals of Dynamic Systems and the Foundations of Quantum Physics. 

SIAM.  
9. Weissblut A. (2011) Non-Hamiltonian Quantum Mechanics and the Numerical Researches of 

the Attractor of a Dynamical System. Informational Technologies in Education 11 P. 73 

– 78  
10. Henon M. (1976) A two – dimensional mappings with a strange attractor. Commun. Math. 

Phys. 50, N 1, P. 69 – 77  
11. David D. Nolte (2015). Introduction to Modern Dynamics: Chaos, Networks, Space and 

Time. Oxford University Press.  
12. Katok A., Hasselblatt B. (1996). Introduction to the modern theory of dynamical systems. 

Cambridge  
13. David Stirzaker (2005). Stochastic Processes and Models. Oxford University Press.  
14. Lozi R. (1978) Un atracteur etrange du type atracteur de Henon. J. Phis. Col., 39, P. 9 – 10 

https://www.taylorfrancis.com/books/9781351241120/
https://en.wikipedia.org/wiki/Gerald_Teschl
http://www.mat.univie.ac.at/~gerald/ftp/book-ode/
http://www.mat.univie.ac.at/~gerald/ftp/book-ode/
http://www.mat.univie.ac.at/~gerald/ftp/book-ode/
https://en.wikipedia.org/wiki/Providence,_Rhode_Island
https://en.wikipedia.org/wiki/American_Mathematical_Society
https://books.google.com/books?id=0avUelS7e7cC

